skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Niemack, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marshall, Heather K; Spyromilio, Jason; Usuda, Tomonori (Ed.)
  2. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
  3. Chiozzi, Gianluca; Ibsen, Jorge (Ed.)
  4. Abstract The Atacama Cosmology Telescope Data Release 6 (ACT DR6) power spectrum is expected to provide state-of-the-art cosmological constraints, with an associated need for precise error modeling. In this paper we design, and evaluate the performance of, an analytic covariance matrix prescription for the DR6 power spectrum that sufficiently accounts for the complicated ACT map properties. We use recent advances in the literature to handle sharp features in the signal and noise power spectra, and account for the effect of map-level anisotropies on the covariance matrix. In including inhomogeneous survey depth information, the resulting covariance matrix prescription is structurally similar to that used in thePlanckCosmic Microwave Background (CMB) analysis. We quantify the performance of our prescription using comparisons to Monte Carlo simulations, finding better than 3% agreement. This represents an improvement from a simpler, pre-existing prescription, which differs from simulations by ∼ 16%. We develop a new method to correct the analytic covariance matrix using simulations, after which both prescriptions achieve better than 1% agreement. This correction method outperforms a commonly used alternative, where the analytic correlation matrix is assumed to be accurate when correcting the covariance. Beyond its use for ACT, this framework should be applicable for future high resolution CMB experiments including the Simons Observatory (SO). 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
  6. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
  7. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
  8. Marshall, Heather K; Spyromilio, Jason; Usuda, Tomonori (Ed.)
  9. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)